GATE Materials Science Syllabus (XE_C)

GATE Materials Science Syllabus (XE_C) – Download Syllabus in PDF – Learn Dunia

GATE

GATE Materials Science Syllabus (XE_C): GATE Syllabus is based on the different stream according to the qualifying examination. IIT Madras has define GATE syllabus in this year according to the 23 papers. These will be conducted for admissions to the M.Tech programmes which is offered by the IITs and IISC. The GATE syllabus 2019 will be same according to the previous year. The national level engineering entrance exam will be conducted for post graduation courses on February 2rd & 3th and February 9th & 10th, 2019. Candidates need to review GATE syllabus 2019 for the stream that they will be appearing for.The syllabus defines that what are the topics their subtopics they need to prepares for the appearing examination.Candidates can download GATE syllabus 2019 from below given table where the syllabus are given for every stream. The syllabus is the very important part of the examination because it plays an important role in the examination.

newiconGATE 2019 Exam Dates has been released now, Click Here for more information

GATE Materials Science Syllabus (XE_C)

GATE Material Science (XE_C) Sections consists of eight sections such as  Processing of Materials, Characterisation Techniques, Structure and Imperfections, Thermodynamics and Kinetics, Properties of Materials, Material types, Environmental Degradation and  Elements of Quantum Mechanics and Mathematics.

So lets discuss GATE Material Science Syllabus (XE_C). Check Below:

Section 1: Processing of Materials

Powder synthesis, sintering, chemical methods, crystal growth techniques, zone refining, preparation of nanoparticles and thin films.

Section 2: Characterisation Techniques

X-ray diffraction, spectroscopic techniques like UV-vis, IR, Raman. Optical and Electron microscopy.

Section 3: Structure and Imperfections

Crystal symmetry, point groups, space groups, indices of planes, close packing in solids, bonding in materials, coordination and radius ratio concepts, point defects, dislocations, grain boundaries, surface energy and equilibrium shapes of crystals.

Section 4: Thermodynamics and Kinetics

Phase rule, phase diagrams, solid solutions, invariant reactions, lever rule, basic heat treatment of metals, solidification and phase transformations, Fick’s laws of diffusion, mechanisms of diffusion, temperature dependence of diffusivity.

Section 5: Properties of Materials

Mechanical Properties: Stress-strain response of metallic, ceramic and polymer materials, yield strength, tensile strength and modulus of elasticity, toughness, plastic deformation, fatigue, creep and fracture

Electronic Properties:Free electron theory, Fermi energy, density of states, elements of band theory, semiconductors, Hall effect, dielectric behaviour, piezo, ferro, pyro electric materials

Magnetic Properties: Origin of magnetism in metallic and ceramic materials, paramagnetism, diamagnetism, ferro and ferrimagnetism

Thermal Properties: Specific heat, thermal conductivity and thermal expansion, thermoelectricity

Optical Properties: Refractive index, absorption and transmission of electromagnetic radiation in solids, electrooptic and magnetoopticmaterials, spontaneous and stimulated emission, gas and solid state lasers

Also Check:

Section 6: Material types

Concept of amorphous, single crystals and polycrystalline materials, crystallinity and its effect on physical properties, metal, ceramic, polymers, classification of polymers, polymerization, structure and properties, additives for polymer products, processing and applications, effect of environment on materials, composites.

Section 7: Environmental Degradation

Corrosion, oxidation and prevention

Section 8: Elements of Quantum Mechanics and Mathematics

Basics of quantum mechanics, quantum mechanical treatment of electrical, optical and thermal properties of materials, analytical solid geometry, differentiation and integration, differential equations, vectors and tensors, matrices, Fourier series, complex analysis, probability and statistics.

Leave a Reply

Your email address will not be published. Required fields are marked *